Glucagon Stimulates Hepatic FGF21 Secretion through a PKA- and EPAC-Dependent Posttranscriptional Mechanism

نویسندگان

  • Holly A. Cyphert
  • Kimberly M. Alonge
  • Siri M. Ippagunta
  • F. Bradley Hillgartner
چکیده

Previous studies have shown that whole body deletion of the glucagon receptor suppresses the ability of starvation to increase hepatic fibroblast growth factor 21 (FGF21) expression and plasma FGF21 concentration. Here, we investigate the mechanism by which glucagon receptor activation increases hepatic FGF21 production. Incubating primary rat hepatocyte cultures with glucagon, dibutyryl cAMP or forskolin stimulated a 3-4-fold increase in FGF21 secretion. The effect of these agents on FGF21 secretion was not associated with an increase in FGF21 mRNA abundance. Glucagon induction of FGF21 secretion was additive with the stimulatory effect of a PPARα activator (GW7647) on FGF21 secretion. Inhibition of protein kinase A (PKA) and downstream components of the PKA pathway [i.e. AMP-activated protein kinase and p38 MAPK] suppressed glucagon activation of FGF21 secretion. Incubating hepatocytes with an exchange protein directly activated by cAMP (EPAC)-selective cAMP analog [i.e. 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME)], stimulated a 3.9-fold increase FGF21 secretion, whereas inhibition of the EPAC effector, Rap1, suppressed glucagon activation of FGF21 secretion. Treatment of hepatocytes with insulin also increased FGF21 secretion. In contrast to glucagon, insulin activation of FGF21 secretion was associated with an increase in FGF21 mRNA abundance. Glucagon synergistically interacted with insulin to stimulate a further increase in FGF21 secretion and FGF21 mRNA abundance. These results demonstrate that glucagon increases hepatic FGF21 secretion via a posttranscriptional mechanism and provide evidence that both the PKA branch and EPAC branch of the cAMP pathway play a role in mediating this effect. These results also identify a novel synergistic interaction between glucagon and insulin in the regulation of FGF21 secretion and FGF21 mRNA abundance. We propose that this insulin/glucagon synergism plays a role in mediating the elevation in FGF21 production during starvation and conditions related to metabolic syndrome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epac is involved in cAMP-stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic alpha- and intestinal L-cell lines.

Both Epac and PKA are effectors of the second messenger cAMP. Utilizing an exchange protein directly activated by cAMP (Epac) pathway-specific cAMP analog (ESCA), we previously reported that Epac signaling regulates proglucagon gene (gcg) expression in the glucagon-like peptide-1 (GLP-1)-producing intestinal endocrine L-cell lines GLUTag and STC-1. We now show that Epac-2 is also expressed in g...

متن کامل

Perspectives in Diabetes Epac: A New cAMP-Binding Protein in Support of Glucagon-Like Peptide-1 Receptor–Mediated Signal Transduction in the Pancreatic -Cell

Recently published studies of islet cell function reveal unexpected features of glucagon-like peptide-1 (GLP-1) receptor–mediated signal transduction in the pancreatic -cell. Although GLP-1 is established to be a cAMPelevating agent, these studies demonstrate that protein kinase A (PKA) is not the only cAMP-binding protein by which GLP-1 acts. Instead, an alternative cAMP signaling mechanism ha...

متن کامل

Interaction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic beta-cells.

OBJECTIVE Glucagon-like peptide-1 (GLP-1) rescues insulin secretory deficiency in type 2 diabetes partly via cAMP actions on exchange protein directly activated by cAMP (Epac2) and protein kinase A (PKA)-activated Rab3A-interacting molecule 2 (Rim2). We had reported that haplodeficient Munc13-1(+/-) mouse islet beta-cells exhibited reduced insulin secretion, causing glucose intolerance. Munc13-...

متن کامل

Anchoring of protein kinase A facilitates hormone-mediated insulin secretion.

Impaired insulin secretion is a characteristic of non-insulin-dependent diabetes mellitus (NIDDM). One possible therapeutic agent for NIDDM is the insulinotropic hormone glucagon-like peptide 1 (GLP-1). GLP-1 stimulates insulin secretion through several mechanisms including activation of protein kinase A (PKA). We now demonstrate that the subcellular targeting of PKA through association with A-...

متن کامل

Cyclic AMP-dependent protein kinase and Epac mediate cyclic AMP responses in pancreatic acini.

The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 microM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca(2+), cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014